ANSWERS

EXERCISE 1.1

- **1.** (i) 1 is the multiplicative identity
- (ii) Commutativity
- (iii) Multiplicative inverse
- 2. Rational number

EXERCISE 2.1

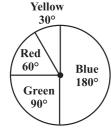
1. $x = 18$	2. $t = -1$	3. $x = -2$	4. $z = \frac{3}{2}$	5. $x = 5$	6. $x = 0$
7. $x = 40$	8. <i>x</i> = 10	9. $y = \frac{7}{3}$	10. $m = \frac{4}{5}$		
	EXERCIS				
1. $x = \frac{27}{10}$	2. <i>n</i> = 36	3. $x = -5$	4. $x = 8$ 9. $z = 2$	5. <i>t</i> = 2	
6. $m = \frac{7}{5}$	7. $t = -2$	8. $y = \frac{2}{3}$	9. $z = 2$	10. $f = 0.6$	
	EXERCIS	E 3.1			
1. (a) 1, 2,	5, 6, 7	(b) 1, 2, 5, 6,	7	(c) 1, 2	
(d) 2		(e) 1			
2. A polygon	n with equal sides a	nd equal angles.			
(i) Equi	lateral triangle	(ii) Square	(iii) Regular he	xagon	
	EXERCIS	E 3.2			
1. (a) 360°	$^{\circ} - 250^{\circ} = 110^{\circ}$	(b) $360^{\circ} - 31$	$0^\circ = 50^\circ$		
2. (i) $\frac{3609}{9}$	$\dot{-} = 40^{\circ}$	(ii) $\frac{360^{\circ}}{15} = 2$	4°		
3. $\frac{360}{24} = 15$	(sides) 4.	Number of sides	=24		
	(Since 22 is not a d (because each exte		$-22^{\circ} = 158^{\circ}$, which	ch is not a divisor of	f 360°).

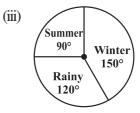
- 6. (a) The equilateral triangle being a regular polygon of 3 sides has the least measure of an interior angle = 60° .
 - (b) By (a), we can see that the greatest exterior angle is 120° .

Reprint 2024-25

EXERCISE 3.3

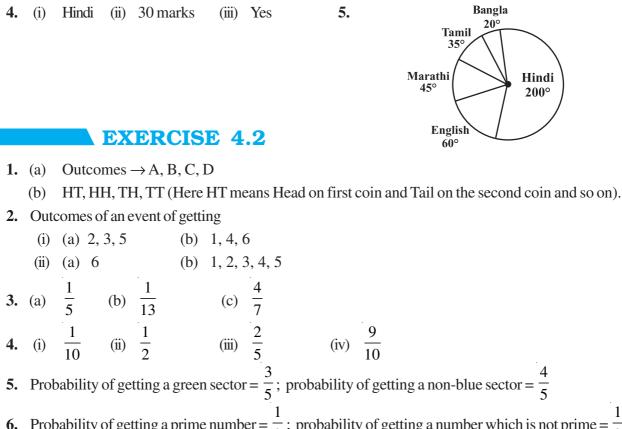
BC(Opposite sides are equal) **1.** (i) OA (Diagonals bisect each other) (iii) 180° (Interior opposite angles, since $\overline{AB} \parallel \overline{DC}$) (iv) $x = 80^{\circ}; y = 100^{\circ}; z = 80^{\circ}$ (ii) $x = 130^{\circ}; y = 130^{\circ}; z = 130^{\circ}$ **2.** (i) (iii) $x = 90^\circ$; $y = 60^\circ$; $z = 60^\circ$ (iv) $x = 100^{\circ}$; $v = 80^{\circ}$; $z = 80^{\circ}$ (v) $y = 112^{\circ}; x = 28^{\circ}; z = 28^{\circ}$ Can be, but need not be. **3.** (i) No; (in a parallelogram, opposite sides are equal; but here, $AD \neq BC$). (ii) No; (in a parallelogram, opposite angles are equal; but here, $\angle A \neq \angle C$). (iii) 4. A kite, for example **5.** 108°; 72°; **6.** Each is a right angle. 7. $x = 110^{\circ}; y = 40^{\circ}; z = 30^{\circ}$ 9. $x = 50^{\circ}$ 8. (i) x = 6; y = 9 (ii) x = 3; y = 13; $\overline{NM} \parallel \overline{KL}$ (sum of interior opposite angles is 180°). So, KLMN is a trapezium. 10. **11.** 60° **12.** $\angle P = 50^{\circ}; \angle S = 90^{\circ}$


EXERCISE 3.4


- 1. (b), (c), (f), (g), (h) are true; others are false.
- **2.** (a) Rhombus; square. (b) Square; rectangle
- A square is 4 sided; so it is a quadrilateral. **3.** (i)
 - A square has its opposite sides parallel; so it is a parallelogram. (ii)
 - A square is a parallelogram with all the 4 sides equal; so it is a rhombus. (iii)
 - A square is a parallelogram with each angle a right angle; so it is a rectangle. (iv)
- Parallelogram; rhombus; square; rectangle. 4. (i)
 - (ii) Rhombus; square (iii) Square; rectangle
- 5. Both of its diagonals lie in its interior.
- $\overline{AD} \parallel \overline{BC}; \overline{AB} \parallel \overline{DC}$. So, in parallelogram ABCD, the mid-point of diagonal \overline{AC} is O. 6.

EXERCISE 4.1

- (i) 200 (ii) Lightmusic (iii) Classical - 100, Semi classical - 200, Light - 400, Folk - 300 1.
- Winter (ii) Winter 150° , Rainy 120° , Summer 90° 2. (i)



20°

Hindi

200°

6. Probability of getting a prime number = $\frac{1}{2}$; probability of getting a number which is not prime = $\frac{1}{2}$ Probability of getting a number greater than $5 = \frac{1}{6}$

Probability of getting a number not greater than $5 = \frac{5}{6}$

EXERCISE 5.1

1.	(i)	1	(ii)	4	(iii)	1	(iv)	9	(v)	6	(1	/i)	9
	(vii)	4	(viii)	0	(ix)	6	(x)	5					
2.	The	se nu	mbers e	nd wi	th								
	(i)	7	(ii)	3	(iii)	8	(iv)	2	(v)	0	(1	/i)	2
	(vii)	0	(viii)	0									
3.	(i),	(iii)			4. 10000	2000	001, 1000000)20	000001				
5.	102	0304	030201	, 101	010101 ²			6.	20, 6, 42, 43				
7.	(i)	25	(ii)	100	(iii)	144							
8.	(i)	1+	3 + 5 +	7+9	9 + 11 + 13								
	(ii)	1+	3 + 5 +	7+9	9 + 11 + 13 +	- 15 -	+ 17 + 19 + 2	21					
9.	(i)	24	(ii)	50	(iii)	198							

			EX	ERCIS	E 5	.2						
1.	(i)	1024	(ii)	1225	(iii)	7396	(iv)	8649	(v)	5041	(vi)	2116
2.	(i)	6,8,1	0 (ii)	14,48,50	(iii)	16,63,65	(iv)	18,80,82				
			EX	ERCIS	E 5	.3						
1.	(i)	1, 9	(ii)	4,6	(iii)	1,9	(iv)	5				
2.	(i), (ii), (iii)		3.	10, 13	i i i i i i i i i i i i i i i i i i i						
4.	(i)	27	(ii)	20	(iii)	42	(iv)	64	(v)	88	(vi)	98
	(vii)	77	(viii)	96	(ix)	23	(x)	90				
5.	(i)	7;42		5;30		7,84		3;78		2;54		3;48
6.	(i)	7;6	(ii)	13; 15	. /	11;6		5;23		7;20		5;18
7.	49			8. 45 ro	ws; 45	plants in eac	ch rov	V	9. 9	000	10.	3600
			EX	ERCIS	E 5	.4						
1.	(i)	48	(ii)	67	(iii)	59	(iv)	23	(v)	57	(vi)	37
	(vii)	76	(viii)	89	(ix)	24	(x)	32	(xi)	56	(xii)	30
2.	(i)	1	(ii)	2	(iii)	2	(iv)	3	(v)	3		
3.	(i)	1.6	(ii)	2.7	(iii)	7.2	(iv)	6.5	(v)	5.6		
4.	(i)	2;20	(ii)	53;44	(iii)	1;57	(iv)	41;28	(v)	31; 63		
5.	(i)	4;23	(ii)	14; 42	(iii)	4;16	(iv)	24; 43	(v)	149; 81		
6.	21 r	n		7.	(a) 10) cm	((b) 12 cm				
8.	24 p	olants		9.	16 chil	dren						
			EX	ERCIS	E 6	.1						
1.	(ii)	and	(iv)									
2.	(i)	3	(ii)	2	(iii)	3	(iv)	5	(v)	10		
3.	(i)	3	(ii)	2	(iii)	5	(iv)	3	(v)	11		
4.	20 c	cuboids	5									
	EXERCISE 6.2											
1.	(i)	4	(ii)	8	(iii)	22	(iv)	30	(v)	25	(vi)	24
	(vii)	48	(viii)	36	(ix)		~ /				~ /	
2.	(i)	False	. ,	True	. ,	False	(iv)	False	(v)	False	(vi)	False
	(vii)	True										

EXERCISE 7.1

1.	(a)	1:2	(b)	1:2000	(c)	1:10		
2.	(a)	75%	(b)	$66\frac{2}{3}\%$	3.	28% students 4. 25	5 matches 5	5. ₹2400
6.	10%	b, cricke	$et \rightarrow 1$	30 lakh;	football	\rightarrow 15 lakh; other gas	mes \rightarrow 5 lakh	L

EXERCISE 7.2

1.	₹ 2,835	2.	₹ 14,560		
3.	₹ 2,000	4.	₹ 5,000	5.	₹ 1,050

EXERCISE 7.3

- **1.** (i) About 48,980 (ii) 59,535 **2.** 5,31,616 (approx)

3. ₹ 38,640

EXERCISE 8.1

- **1.** (i) 0 (ii) ab + bc + ac(iii) $-p^2q^2 + 4pq + 9$
- (iv) $2(l^2 + m^2 + n^2 + lm + mn + nl)$
- **2.** (a) 8a 2ab + 2b 15 (b) 2xy 7yz + 5zx + 10xyz(c) $p^2q - 7pq^2 + 8pq - 18q + 5p + 28$

EXERCISE 8.2

1. (i) 28p (ii) $-28p^2$ (iii) $-28p^2q$ (iv) $-12p^4$ (v) 0 **2.** pq; 50 mn; 100 x^2y^2 ; $12x^3$; $12mn^2p$ 3.

First monomial \rightarrow $3x^2$ $7x^2y$ $-9x^2y^2$ 2x-5y-4xySecond monomial \downarrow $4x^2$ $6x^3$ 2x $-8x^2y$ $14x^3y$ $-18x^3y^2$ -10xy $25y^{2}$ $20xy^2$ $-35x^2y^2$ $45x^2y^3$ -5y-10xy $-15x^2y$ $3x^2$ $6x^3$ $9x^{4}$ $21x^4y$ $-27x^4y^2$ $-15x^2y$ $-12x^{3}y$ $-8x^2y$ $20xy^2$ $-12x^{3}y$ $16x^2y^2$ $-28x^3y^2$ $36x^3y^3$ -4xy $7x^2y$ $14x^{3}y$ $-35x^2y^2$ $21x^4y$ $-28x^3y^2$ $49x^4y^2$ $-63x^4y^3$ $-63x^4y^3$ $-9x^2y^2$ $-18x^3y^2$ $45x^2y^3$ $-27x^4y^2$ $36x^3y^3$ $81x^4y^4$

4.	(i)	$105a^{7}$	(ii)	64pqr	(iii)	$4x^4y^4$	(iv)	6 <i>abc</i>	
5.	(i)	$x^2y^2z^2$	(ii)	$-a^{6}$	(iii)	$1024y^{6}$	(iv)	$36a^2b^2c^2$	(v) $-m^3n^2p$

EXERCISE 8.3

1. (i)	4pq + 4pr (ii)	$a^2b - ab^2$ (iii) $7a^3b^2 + 7a^2b^3$
(iv)	$4a^3 - 36a$ (v)	0
2. (i)	ab + ac + ad (ii)	$5x^2y + 5xy^2 - 25xy$
(iii)	$6p^3 - 7p^2 + 5p$ (iv)	$4p^4q^2 - 4p^2q^4$
(v)	$a^2bc + ab^2c + abc^2$	
3. (i)	$8a^{50}$ (ii) $-\frac{3}{5}x^3y^3$ (iii)	
4. (a)	$12x^2 - 15x + 3;$ (i)	66 (ii) $\frac{-3}{2}$
(b)	$a^3 + a^2 + a + 5;$ (i)	5 (ii) 8 (iii) 4
5. (a)	$p^2 + q^2 + r^2 - pq - qr - pr$	(b) $-2x^2 - 2y^2 - 4xy + 2yz + 2zx$
(c)	$5l^2 + 25ln$	(d) $-3a^2 - 2b^2 + 4c^2 - ab + 6bc - 7ac$

EXERCISE 8.4

1. (i)	$8x^2 + 14x - 15$	(ii)	$3y^2 - 28y + 32$	(iii)	$6.25l^2 - 0.25m^2$
(iv)	ax + 5a + 3bx + 15b	(v)	$6p^2q^2 + 5pq^3 - 6q^4$	(vi)	$3a^4 + 10a^2b^2 - 8b^4$
2. (i)	$15 - x - 2x^2$	(ii)	$7x^2 + 48xy - 7y^2$	(iii)	$a^3 + a^2b^2 + ab + b^3$
(iv)	$2p^3 + p^2q - 2pq^2 - q^3$				
3. (i)	$x^3 + 5x^2 - 5x$	(ii)	$a^2b^3 + 3a^2 + 5b^3 + 20$	(iii)	$t^3 - st + s^2t^2 - s^3$
(iv)	4ac	(v)	$3x^2 + 4xy - y^2$	(vi)	$x^3 + y^3$
(vii)	$2.25x^2 - 16y^2$	(viii)	$a^2 + b^2 - c^2 + 2ab$		

EXERCISE 9.1

1.	$0.88 \ m^2$	2.	7 cm	3. 660 m^2	4. 252 m^2
5.	$45 cm^2$	6.	24 cm ² , 6 cm	7. ₹810	8. 140 m
9.	$119\mathrm{m}^2$	10.	Area using Jyot	i's way = $2 \times \frac{1}{2} \times \frac{15}{2}$	$\frac{5}{2}$ × (30 + 15) m ² = 337.5 m ² ,
11			Area using Kav	ita's way = $\frac{1}{2} \times 15 \times$	$15 + 15 \times 15 = 337.5 \text{ m}^2$

11. 80 cm^2 , 96 cm^2 , 80 cm^2 , 96 cm^2

EXERCISE 9.2

- **1.** (a) **2.** 144 m **3.** 10 cm **4.** 11 m^2
- **5.** 5 cans
- 6. Similarity \rightarrow Both have same heights. Difference \rightarrow one is a cylinder, the other is a cube. The cube has larger lateral surface area
- **7.** 440 m^2 **8.** 322 cm **9.** 1980 m^2 **10.** 704 cm^2

EXERCISE 9.3

1. (a) Volume (b) Surface area (c) Volume

2. Volume of cylinder B is greater; Surface area of cylinder B is greater.

- **3.** 5 cm **4.** 450 **5.** 1 m **6.** 49500 L
- **7.** (i) 4 times (ii) 8 times **8.** 30 hours

EXERCISE 10.1

- **1.** (i) $\frac{1}{9}$ (ii) $\frac{1}{16}$ (iii) 32 **2.** (i) $\frac{1}{(-4)^3}$ (ii) $\frac{1}{2^6}$ (iii) $(5)^4$ (iv) $\frac{1}{(3)^2}$ (v) $\frac{1}{(-14)^3}$ **3.** (i) 5 (ii) $\frac{1}{2}$ (iii) 29 (iv) 1 (v) $\frac{81}{16}$ **4.** (i) 250 (ii) $\frac{1}{60}$ **5.** m = 2 **6.** (i) -1 (ii) $\frac{512}{125}$
- 7. (i) $\frac{625t^4}{2}$ (ii) 5^5

EXERCISE 10.2

- **1.** (i) 8.5×10^{-12} (iv) 8.37×10^{-9} **2.** (i) 0.00000302(iv) 1000100000**3.** (i) 1×10^{-6} (iv) 1.275×10^{-5}
- (v) 3.186×10^{10} (ii) 45000(v) 580000000000

(ii) 1.6×10^{-19}

(v) 7×10^{-2}

(ii) 9.42×10^{-12}

- (iii) 6.02×10^{15}
- (iii) 0.0000003
- (vi) 3614920
- (iii) 5×10^{-7}

4. 1.0008×10^2

EXERCISE 11.1

					1							
1.	No			2.	Parts	of re	d pigment	1	4	7	12	20
					Parts	of b	ase	8	32	56	96	160
3.	24 p	oarts		4.	700 bo	ottles	5.	10 ⁻⁴ c	em; 2 ci	m	6. 21	m
7.	(i)	$2.25 \times$	10 ⁷ c	rystal	S	(ii)	5.4×10^{6} c	crystals	8		8. 4 c	m
9.	(i)	6 m	(ii)	8 m 7	75 cm	10.	168 km					

EXERCISE 11.2

1. (i), ($4 \rightarrow 25,000$ Amount giv							
3. 8 →	$45^\circ, 10 \rightarrow 36^\circ,$	-		Yes	• • •	(ii) 2		(ii	
4. 6	5.	4	6.	3 days		7. 1	5 boxes		
8. 49 m	nachines 9.	$1\frac{1}{2}$ hours	10.	(i) 6 days	s (ii) 6	perso	ons 11. 40) minute	es
	EXERC	CISE 1	2.1						
1. (i)	12 (ii) 2y	(iii)	14 <i>pq</i>	(iv) 1		(v)	6 <i>ab</i>	(vi)	4x
(vii)	10 (viii) x^2y^2		(1, 2)	() 7	$(\cdot \cdot$	()	A (A · 5	2)	
	7(x-6)		6(p - 2q) $5xy(x - 3y)$				4z(-4+5)	(Z ⁻)	
	10 lm(2l + 3a) $4a(-a + b - c)$		3xy(x-3) xyz(x+y-3)) $xy(ax+b)$	$v \perp c_7$	
	(x+8)(x+y)		(3x+1) (5)				(a+b)(x)		
	(5p+3)(3q+5)					(ш)	(<i>u</i> + <i>b</i>) (<i>x</i>	<i>y</i>)	
()		. ,							
		CISE 1	2.2						
1. (i)	$(a + 4)^2$	(ii)	$(p-5)^2$	(iii) (5	$(m + 3)^2$	(iv)	$(7y+6z)^2$		
(v)	$4(x-1)^2$	(vi)	(11b - 4c)	l^{2} (vii) (<i>l</i>	$(-m)^{2}$	(viii)	$(a^2 + b^2)^2$		
2. (i)	(2p - 3q)(2p + 3q)	<i>q</i>) (ii)	7(3a - 4b)	(3a + 4b))	(iii)	(7x - 6) (7x + 6)	
. ,	$16x^3(x-3)(x+3)$	· · · · ·			•	·	4)		
(vii)	(x-y-z)(x-z)(x-z)(x-z)(x-z)(x-z)(x-z)(x-z)(x	+z) (viii)	(5a - 2b +	- 7c) (5a +	-2b - 7c))			
	· /	(ii)	x 1	· · · ·	```				
	$(m^2 + n^2) (a + b)$								
. ,	(5y+2z)(y-4)	. ,	· / ·	,		(ix)	(3x-2) (2)	(2y - 3)	
	$(a-b)(a+b)(a^2)$, , , ,	x x	/ u	<i>´</i>				
	(x-y-z)(x+z)(x+z)(x+z)(x+z)(x+z)(x+z)(x+z)(x+	$(+ z) [x^2 + (y)]$	$(z + z)^2$]	(iv) $z(z)$	(2x-z)(2)	$2x^2 - 2$	$2xz + z^2$)		
	$(a-b)^2 (a+b)^2$							-	
5. (i)	(p+2)(p+4)	(ii)	(q-3)(q	-7)		(iii)	(p + 8) (p	-2)	
	EXER	CISE 1	2.3						
1. (i)	$\frac{x^3}{2}$ (ii) $-4y$	(iii)	6pqr	(iv) $\frac{2}{3}$	x^2y	(v)	$-2a^{2}b^{4}$		
2. (i)	$\frac{1}{3}(5x-6)$	(ii)	$3y^4 - 4y^2 - $	+ 5		(iii)	2(x + y +	z)	
(iv)	$\frac{1}{2}(x^2+2x+3)$	(v)	$q^3 - p^3$						

3. (i)	2x - 5 (ii) 3	5 (iii)	6 <i>y</i>	(iv)	xy	(v)	10 <i>abc</i>
4. (i)	5(3x + 5)	(ii)	2y(x + 5)	(iii)	$\frac{1}{2}r(p+q)$	(iv)	10abc $4(y^2 + 5y + 3)$
	(x+2)(x+2)	3)			-		
5. (i)	y + 2 (ii) <i>y</i>	<i>m</i> – 16 (iii)	5(p - 4)	(iv)	2z(z-2)	(v)	$\frac{5}{2}q(p-q)$
		(vii)					2
	EXI	ERCISE 1	3.1				
1. (a)	36.5° C	(b)	12 noon	(c)	1 p.m, 2 p.m	•	
(d)	, ,	-				-	listant from the tw

- (d) 36.5° C; The point between 1 p.m. and 2 p.m. on the *x*-axis is equidistant from the two points showing 1 p.m. and 2 p.m., so it will represent 1.30 p.m. Similarly, the point on the *y*-axis, between 36° C and 37° C will represent 36.5° C.
- (e) 9 a.m. to 10 a.m., 10 a.m. to 11 a.m., 2 p.m. to 3 p.m.
- **2.** (a) (i) $\gtrless 4$ crore (ii) $\gtrless 8$ crore
 - (b) (i) \gtrless 7 crore (ii) \gtrless 8.5 crore (approx.)
 - (c) $\gtrless 4$ crore (d) 2005
- **3.** (a) (i) 7 cm (ii) 9 cm
 - (b) (i) 7 cm (ii) 10 cm
 - (c) 2 cm (d) 3 cm (e) Second week (f) First week
 - (g) At the end of the 2nd week
- **4.** (a) Tue, Fri, Sun(b) 35° C(c) 15° C(d) Thurs**6.** (a) 4 units = 1 hour(b) $3\frac{1}{2}$ hours(c) 22 km
 - (d) Yes; This is indicated by the horizontal part of the graph (10 a.m. 10.30 a.m.)
 - (e) Between 8 a.m. and 9 a.m.
- 7. (iii) is not possible

EXERCISE 13.2

- **1.** (b) (i) 20 km (ii) 7.30 a.m. (c) (i) Yes (ii) ₹200 (iii) ₹3500
- **2.** (i) Yes (ii) No

JUST FOR FUN

1. More about Pythagorean triplets

We have seen one way of writing pythagorean triplets as $2m, m^2 - 1, m^2 + 1$.

A pythagorean triplet *a*, *b*, *c* means $a^2 + b^2 = c^2$. If we use two natural numbers *m* and n(m > n), and take $a = m^2 - n^2$, b = 2mn, $c = m^2 + n^2$, then we can see that $c^2 = a^2 + b^2$.

Thus for different values of *m* and *n* with m > n we can generate natural numbers *a*, *b*, *c* such that they form Pythagorean triplets.

For example: Take, m = 2, n = 1.

Then, $a = m^2 - n^2 = 3$, b = 2mn = 4, $c = m^2 + n^2 = 5$, is a Pythagorean triplet. (Check it!) For, m = 3, n = 2, we get,

a = 5, b = 12, c = 13 which is again a Pythagorean triplet.

Take some more values for *m* and *n* and generate more such triplets.

- 2. When water freezes its volume increases by 4%. What volume of water is required to make 221 cm³ of ice?
- **3.** If price of tea increased by 20%, by what per cent must the consumption be reduced to keep the expense the same?
- 4. Ceremony Awards began in 1958. There were 28 categories to win an award. In 1993, there were 81 categories.
 - (i) The awards given in 1958 is what per cent of the awards given in 1993?
 - (ii) The awards given in 1993 is what per cent of the awards given in 1958?
- 5. Out of a swarm of bees, one fifth settled on a blossom of *Kadamba*, one third on a flower of *Silindhiri*, and three times the difference between these two numbers flew to the bloom of *Kutaja*. Only ten bees were then left from the swarm. What was the number of bees in the swarm? (Note, *Kadamba*, *Silindhiri* and *Kutaja* are flowering trees. The problem is from the ancient Indian text on algebra.)
- 6. In computing the area of a square, Shekhar used the formula for area of a square, while his friend Maroof used the formula for the perimeter of a square. Interestingly their answers were numerically same. Tell me the number of units of the side of the square they worked on.
- 7. The area of a square is numerically less than six times its side. List some squares in which this happens.
- 8. Is it possible to have a right circular cylinder to have volume numerically equal to its curved surface area? If yes state when.
- 9. Leela invited some friends for tea on her birthday. Her mother placed some plates and some *puris* on a table to be served. If Leela places 4 *puris* in each plate 1 plate would be left empty. But if she places 3 *puris* in each plate 1 *puri* would be left. Find the number of plates and number of *puris* on the table.
- 10. Is there a number which is equal to its cube but not equal to its square? If yes find it.
- **11.** Arrange the numbers from 1 to 20 in a row such that the sum of any two adjacent numbers is a perfect square.

Answers

2. $212\frac{1}{2}$ cm³

- 3. $16\frac{2}{3}\%$
- **4.** (i) 34.5% (ii) 289%
- **5.** 150
- **6.** 4 units
- 7. Sides = 1, 2, 3, 4, 5 units
- 8. Yes, when radius = 2 units
- 9. Number of puris = 16, number of plates = 5
- **10.** 1
- **11.** One of the ways is, 1, 3, 6, 19, 17, 8 (1 + 3 = 4, 3 + 6 = 9 etc.). Try some other ways.